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The 1"55,(1ng, tgg eg)—r5g(3Agg, tgg eg) vibronic spectrum is recorded in absorption and emis-
sion—under x-ray excitation—at crystal temperatures of 77 and 5°K. The spectrum involves
up to four phonon processes and a theoretical treatment of such a transition is presented. A
possible explanation of the band is suggested and, by using imperfect-lattice Green’s func-
tions for the nearest-neighbor motion, it is constructed to give excellent agreement with ex-
periment. The transition is forced (electric dipole) by one of the Ty, vibrations of the nearest-
neighbor complex. Additional E, vibrations couple in the higher phonon processes which sug-
gest the presence of a Jahn-Teller distortion in the 1T2g excited state. However, it has not
been possible to establish the presence of such a Jahn-Teller distortion from any other ex-
perimental data. A similar calculation is undertaken for the two-phonon band of the
Do (PTog, 83, €3)-T'5p (CAy,, 15, €2) transition of Ni2* in MgO. Again there is an indication of a
coupling to E, vibrations in the two-phonon process.

I. INTRODUCTION

In Paper I' the vibronic band associated with the
single electronic transition I'y,(*Ty,, t3 €d)-T's,
(Ay, t3 e?) of MgO: Ni** is studied and good agree-
ment is obtained between the one-phonon structure
and that predicted by a Green’s-function treatment
of the motion of the impurity ion and its six nearest
neighbors. In this paper the calculations are ex-
tended to consider higher-order phonon processes;
the main focus of attention being 5, (1T, , t5, €})-

I, (*Ay, t3, e?) vibronic transitions in MgO: Ni®.
In this case both states are well isolated from
other electronic levels and the vibronic band
associated with this single electronic transition
is seen very clearly in emission, weakly in ab-
sorption. A possible construction of the band is
proposed. It is constructed with localized Green’s
functions using semiempirical parameters and
compared to the observed band. A similar treat-
ment for the two-phonon sideband of the I'y,— I's,
is presented and a comparison made between the
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two cases.

In Paper I, a simple but crude model was used
successfully to predict the one-phonon coupling
parameters. This calculation is repeated here
for the I'y,~ I';, transition and the results briefly
discussed.

II. EXPERIMENT

A synopsis of the MgO : Ni® spectrum is given
in Paper I. The spin-forbidden transition between
the ground state T's,(*A,, ¢35 €2) and the Ty, (1T, 3,
e?) state is seen in both absorption and emission.
These have been reported by Ralph and Townsend.?3
Here the emission spectrum is reported in higher
resolution, although less structure is seen. The
band can be excited by x rays (15 mA, 55 kV) or
electron beam and is then two orders of magnitude
more intense than by the use of optical lamps
available in the laboratory. Details of the x-ray
stimulation are as follows:

A 1-kW x-ray tube with a tungsten target was
used. The effective focus of the beam was an area
1X1 mm which lay 7.5 cm vertically below the
position of the crystal sample in the helium Dewar.
The x rays pass through two windows: one a window
on the x-ray-tube head and a 1- u-thick platelet of
mica which replaces the bottom window of the
helium Dewar. The x-ray set was normally run
at 55 kV and a beam current of 15 mA, but other
settings at the same power gave only minor

---— Intermediate temperatures

photomultiplier response
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FIG. 1. MgO:Ni%**. 20000-cm™! emission band for
various temperatures.

Intensity

wavenumber
(em™)

FIG. 2. Tg('Ty,, t3.ed)-T5CA,,, t,ed) emission band
at helium temperature corrected for system response.
The electronic origin lies at 21095 cm™! and the horizon-
tal scale gives displacements from this position.

changes (~ 10%) of the fluorescence intensity. The
light emitted from the sample at right angles

was analysed by a Hilger and Watts prism spec-
trometer using spectral slit width of 7 cm™ and
detected by an EMI 9558 photomultiplier.

The crystal was clamped to the cooled copper
finger of a helium Dewar, and its temperature
was measured using a copper-constantan thermo-
couple with the junction firmly clamped to the side
of the crystal.

III. EXPERIMENTAL RESULTS

The fluorescence has been recorded at several
temperatures between room and liquid helium.
These are indicated in Fig. 1, and Fig. 2 gives
the trace at helium temperature corrected for
system response.

The small peak at 21 300 cm™ which appears at
nitrogen temperatures and above must arise from
population of an excited level (either electronic
or vibrational) via the Boltzman distribution fac-
tor. If this peak corresponds to the annihilation
of a phonon corresponding to the phonon creation
peak at 20890 cm™ (i.e., a 205-cm™ vibrational
peak), the ratio of its peak intensity to that at
20890 cm™ should equal e "A%/*T ywith AE= 205
cm™. The ratio of their intensities is measured
for various temperatures between 50 and 200 °K
and found to correspond to a AE=195+15 cm™,
in favorable agreement with that expected. The
emission band is thus considered to be the vibron-
ic transition from a single or very closely spaced
set of electronic levels at 21 095 cm™.

The excited state involved is the T, (¢, e}) pre-
dicted by Liehr and Ballhausen® using parameters
F,=1400 cm™, Dg=-830 cm™, and A=- 325 cm™
to lie at 21 350 cm™. This state may be split by
the Jahn-Teller® effect, but there is no direct
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optical evidence of any lifting of the degeneracy
with only a small sharpening of the spectrum on
approaching helium temperatures.

At first inspection it would appear that there is
a progression of 200 cm™. 8 However, both the
exact intervals and the slight irregularity in the
intexfé‘fi'ty distribution suggests that this is unlikely.
Furthermore, the transition is forced electric
dipole and therefore the first phonon process must
have odd parity. Higher-order processes on the
other hand are more probably of even parity.
Certainly, in the two-phonon process one must be
odd and the second one even. When there is an
odd number of phonons involved, it is possible
for further odd-parity vibrations to couple in pairs,
but coupling of even ones is generally stronger.
The first two peaks in the observed spectrum are
both within the range of lattice vibrations of MgO
and correspond well to peaks in the Green’s func-
tions for the T‘fu’ odd-symmetry displacements
for a Ni® substituted lattice with small negative
force-constant changes (see Ref. 1, Fig. 6). The
intensity ratio and the separation of the first and
second peaks is repeated for the third and fourth
implying that there is a coupling to a phonon dis-
tribution with a peak at 400 cm™—a value (as it
will be shown later ) in close agreement with the E,
(or Ty,) Green’s function. Repeated coupling to
this even phonon distribution would then give rise
to the rest of the band. A detailed calculation
and a theoretical treatment of processes involving
two and more phonons is employed to justify this
interpretation.

IV. THEORY

The Hamiltonian for the d® configuration in a

|

cubic crystal field is taken as
3=3Csree ton+IHcubtc+¥Hrs - (1)

The perturbation giving rise to the vibronic band
is given by 3¢’ =P +V, where P is the interaction
of the Ni®* electrons with the photon field, and V
is the electron-phonon interaction. The interaction
potential V expanded in a power series of the lat-
tice displacements (from the equilibrium position
of the defect lattice) is given by

V@E X)=V,F, X)+ Vo X) 4+ -+

=2 VEEX®
T

1 ' '
* P 2 Vlg‘"vn,r‘)'r'(.f)x(r"l; Xlg'"'v)' oo, (2)
I'I;zlnnl

where the symmetry displacements X{) (of the im-
purity ion and six nearest O2 ions) and the elec-
tron coupling functions V}",’ each transform as the
irreducible representation I, row y —» being used
to distinguish between displacements of the same
symmetry. V, used in Eq. (2) is the term in the
interaction potential containing displacements to
the degree 7. The electronic coupling functions
VEP(F) and V{2, . (F) are derivatives of the elec-
tron potential evaluated at the equilibrium configu-
ration of the imperfect lattice. ’

A. One-Phonon Coupling

In the notation introduced in Ref. 1 the probabil-
ity of one-phonon creation in the low-temperature
limit when going from electronic level e to the final
electronic state f is given by

i
W21 5 b > (Ax;Tars | P|Ox; @i Ty ) (Ox; @ Ty | V| OxoT've)
i n Ye ¥ tinal states |T';?jai gl-ge"’ﬁw
2
+(lxll"f'yflV;I1x@a(§1“{ré>(1;(;f;1‘¢yd?lOXoF&Q}l 66,8, sty +ii0) . (3)
iTO9frT

The total wave function is written |nx,a,Tgyy). n
denotes the number of photons; X,(k, ]2 is the har-
rr_lonic oscillator wave function of the k, j mode
(k,j omitted for brevity), all other oscillators
being in their zeroth occupational state; and
la,Tyy,) is the electronic wave function belonging
to the irreducible representation I',, row vy, —a,
being used to distinguish between states of same
symmetry but is dropped for the initial |Tgy,) and
final |Tyy,) states. The energies of the phonon,
associated photon, initial, intermediate, and final
electronic states are given by fiw, 7iv, 8, 8,
and §,, respectively. The initial and final elec-

[

tronic states are both of even parity and hence the
transition is only permitted by the odd-parity com-
ponents of the interaction—coupling odd-parity in-
termediate electronic states. The states lie con-
siderably above the d® levels such that

ﬁw«(é’,-—é’,)ﬂ((g,—ge) N (4)

and will be neglected in the energy denominators.
The transition rate for light polarized in the y
direction, with angular frequency between v and
v+Ay(Ay= Aw) observed in solid angle AQ is then
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where

<rf')’ijlair{h>(atr47i’V(")Lre )

-
>),()

and ImG{™"’ (w) is the imaginary part of the Green’s
function G{™ (w) defined in Ref. 1.

Vg7,
e 'f =
er‘rn

e

B. Multiphonon Coupling

A two-phonon sideband arises from terms to
the second power in lattice displacements; the
linear term of Eq. (1) in second order or the
quadratic term in first. These terms also give
rise to a change in the lattice frequency between
the two electronic states. However, because the
absorption and emission exhibit similar vibra-
tional frequencies (see Ref. 2), this must be small
and will be neglected at present.

It is anticipated that for the second phonon pro-
cess either the terms V; or V, will predominate.
If the former is the case, then for the 7-phonon
process, V, will still give the larger contribution
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two limiting cases are considered.
1. Type I: Two Phonon

The predominance of the linear term will later
be taken to imply a presence of a Jahn-Teller-
type distortion. It may appear that taking the
Jahn-Teller interaction as a perturbation, where-
as spin-orbit interaction is included in the original
Hamiltonian, is being inconsistent. However, the
off-diagonal terms of the Jahn-Teller interaction,
apparently neglected, may be considered to be
present as the coupling parameters are being
treated empirically. Likewise, the spin-orbit
coupling parameter is empirical and thus any
change due to reduction of orbital momentum can
be allowed for by adjusting this parameter. Note
that the important contribution of the spin-orbit
interaction is to mix terms of different multiplicity,
thus permitting the “spin-forbidden” transitions.

If this interaction is not included in the Hamiltonian,
it would have to be included as a further perturba-
tion, giving an even more complex form of the
transition probability but without altering the final
expressions in functional form.

The wave functions are still taken to be Born-
Oppenheimer products even in the presence of the
Jahn-Teller distortion. This will be justified later
for the individual case considered.

The transition probability of a two-phonon pro-
cess arising from terms linear in lattice displace-
ment is given by third-order perturbation theory
by

|P+V1|\If W, | P+V,|8,) |2

(type I); if the latter, then V, (type II). Thus the
|
27 (T | P+ V| ¥,) (¥,
W, =2 > > =k 1 ¥4
o=t r initial | 42 (El
and
final

states

where V, is the first term in the expansion in Eq. (2).
ergy of the system in state 2. Expanding this gives

) (,~E.) ™

¥, and E, are the total wave function and total en-

21
Woup = 5
X2 0 2 ((1 X1 X{ Ff’)’fIPI 0X;X1a; Ty i) (Ox,x,'ajl“,nl V1| Oxo X{ a; Ty, ) (0Xg X{ a;T vy l V1| 0Xo X4 To7e)
"o giates 410 6-8,+hw+hw )8, -8, +hw")

<1X1X1rf7flV1|1X1 Xo @;Tiv i) {1 Xg ¢Y¢IP|0X1X0‘1 Tyvi) 0X1 X0 rﬂ’zlvlloxoxo Tove)
8;-8;-nw' )8, -8;+hw)

(1X1X1rf7f|V1|1XoX1ai Ty ) xox{ @, Ty i | Vil 1xoxs @, Ty XX 1xox0 @i T V1| P OxoX{ ToYe
(gi gf h’w )(6 8f -hw - f’iw')

>>l 0(8;-8,+hiv+hiw+iiw’)
(8)

where X, and Xz represent x,.(k j) and X;.'(k’,J )—the harmonic-oscillator wave function of the (k 7) and
(k’,7') mode in occupation state % and k!, respectively, with all others being in their zeroth occupation
state. Likewise w and w* represent w(k 7) and w(k’ ,j'). Note this expression (8) is not formulated cor-
rectly to cover the case k' ﬁ, j'=j. However, it gives the same answer in the low-temperature limit
and differs only by a negligible amount above 0 °K.
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The wave functions of radiation field, vibrations or pure electronic, take on either even or odd parity
but the total wave function maintains even parity. By keeping track of the changes in parity of the com-
ponent functions the transition probability will be expressed more specifically. First, the linear pertur-
bation in (2) is rewritten

_ (n) )
Vi= 2 Vi, X, 4 D Vp, X
I‘uyun Tg

(9

%

where the first summation is restricted to odd displacement # and the second to even displacement g. In
the XY, complex there is only one displacement of each of the even representations and, therefore, no
(#) is included in the second term. Also u or g is in¢luded as suffix on the electronic wave functions to

denote odd or even parity. The transition probability is then

ve-2 D L | D
Yg¥p final |T, 7, n T 70
e’f gtates | YU (ug)i’i® i
Tg7

(1 xsX{ Tevs | P OXyXf @i Tty ) OXsXi @i Tty s | Vi ,qu'), |OxoX{ @, Tyiv 1) OXox{ s gﬁ’;lVry Xrg?‘!OXOXI;rgeYe)

Bui—8+Hw+RW )8 ;=8 +HW")

L SIxaxi Tovs | Pl OXyx{ @i Loty 1) OXiX{ @i Tui | Vr'grnggrgl 0X:X§@: Tuv1) (OX1X§ @ T 1| V7 (") X | OXoXg Teav o)

(8 i = 8 otliw +Hw " )8y = 8. +liw)

<1X1X1 I‘,ﬁ,lV‘"’ X, |1xoX] @i Tuvs ) (1XoX1 @ Givi | P| OXoX{ @ Tory Y{0XoX{ 4y n')’ler e XT ot [ OXoX§ Tyeve)
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2SI T |V, XE
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To simplify the form of the two-phonon coupling,
the following conditions are assumed:

(a) The electronic levels ¢ and f are well isolated
from neighboring levels, i.e., energy separation
to nearest electronic states >»7w’.

(b) The odd-parity excited states 7 are sufficiently
far above the electronic levels ¢ and f such that

11w << 8y = 85~ Eyi = 8, A8y . (11)

In the case of the I'y,~ I';, transition, each elec-
tronic level involved is more than 1000 cm™ from
any neighboring level, thus satisfying condition
(a). Condition (b) is reasonably well satisfied for
d® electronic levels, as discussed in Paper I

Where one of the two intermediate electronic
states has even parity, because of condition (a)

(10)

|
by far the largest contribution will arise when
one of the electronic energies in the denominators
cancel (i.e., when one of the intermediate elec-
tronic states is Iy or Iy, —one of the compo-
nents of the ground or excited states). The con-
tributions from other-even electronic states will
be neglected.

Where both of the intermediate states are of odd
parity, the denominator is larger by a factor
A8,; /fiw compared to the case where one of inter-
mediate state is of even parity. Hence, terms in
lines two and five of Eq. (10) canalso be neglected.

Separating the electronic and vibrational parts,
the transition probability of emitting a photon
polarized in y direction with angular frequency
between v and v+ Aw into solid angle AQ is now
given by
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AQAwY e (Tl y |aiLuns) @i Lovs | VE) | Tearld Y (Teal | Ve | T,
(2) e |V | @ Lye) (@il | Vo, | Teeve ) (Teeve Ty | Tesve)
We-‘f— 2mc 727') Z: I‘Zv)n [I‘Zr;a Z'> ( ke - :
e’f gl r‘u;‘ uili%i e (8,,; _ge)mwr)
(Qf‘)’f'V(,:')u|airut‘/e)(air;u7’4|y!r}e”’e’)( eove |VI‘7 | Teeve) )
6ui = 8p)w")
+E< (r,f’)’flvr 7, | Tt )T, Y ’ylai ui?’t)(air;u')’i| Ve 7u| Teee)
v (7w’ )8, —8,)
+ (T Ve, | T YTt | VI‘(uvulair;in> @Li|y | o) )]
(-7w”) (8, - 8)
X (xa| X800, [ X0) X | Xy [ XD |? 6(8; - 8, +Hiv 4w’ +h0) . (12)

If the linear perturbation Vr‘,‘ is diagonal, then the summation over the components of I, and I}, can
be replaced by % =¥ and ¥, =v,. This will not apply in general, but is valid for the part1cula.r case of a
I;, level with an Ay, or E, perturbation. i

This restriction is desirable in view of the simplification it gives.
The coupling parameter within the brackets becomes

[ 5 ((I‘zfytlggIa‘I‘m'y‘)(ail"l"yilVf'",}'“ll"gEyz)

(
‘ <rzL7fl Vr’:c)"y lairﬁ Yi) <ai Tyyilyl rzehz))]
Tyi?;a; 8:4{ - 86 814! - 81‘
x[<ree'yelvrgvglrge7’e> - (T, foi Vrgr |rgf'>’f>] (13)
The first line is simply FZ%;rv,f,n defined earlier [Eq. (6)] and the second can be defined as
7,
AFrey? = (Caete| Ve | Teee) =(Cers Ve | Tepry) s (14)

and both of these are frequency independent, so that Eq. (12) reduces to

AQAwYe? Yootf Vg Tix )
Wely = T onet -?—J; I‘Zy> Fverurfn Fyf yront AFry AFrg, Z <X1(k,])|XPu7u|X0(k’f)) (Xo(k’J)IXI‘" ¥ [xa,5))
e’f *ulun
r‘g-yg Ej

2 ' = o . > >, >
(-——-——ﬁw(k,j)) x; (&, 3" IXrgrA,IXo(k 23 ) Kol ,])[X{fg,g|x1(k ,3)) 6(8; = 8, + 1w +hw(k, j) +Hwk', 7)) , (15)

Where the vibrational terms have been written in unabbreviated form. Expanding the vibrational terms by
substituting for the symmetry displacement

x5 =§v‘11‘~'4’(l?,j)q(l'<’,j)

(16)
and evaluating as for the one-phonon sideband gives
Z} n (A(n)tA(n' (k ) 1 \2 13 A4 (EI ')A (EI I)*b(h_ (E .)‘ 7 (I‘(’l .I)_h, )
oy m Cyr, T ) ﬁw(ﬁr,jl)} zw(ET’?) T 3] - l‘gr, sJ Wik, 7)+hAw K ,7 w
i:jl
LS s, ) &, 5400, ) - ;)
7)% m Ty T, Ky )
1 2 1 el .l‘A Y AYOY o
P T®TY) T eI W oo B E D v =0 .

This can be reexpressed in terms of the continuous Green’s function defined in Ref. 1
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0

Therefore, by defining
Sr,(@)=Gr,(w)/w?, (19)

the transition probability takes the final form

AQAwv3e?

(2 (2 —
W= wP(w) Aw = Src
Yo Vpk Yo~ Vg =Tk

x LD Rt FR AR s AR

Tyrynn’, 1'“ LA

1 “max
X o f ImGli';"" (wy) Im§G rf(w -wy)dw; , (20)
0

where wy,, is the maximum frequency in the lattice.

The AF!‘ng in this equation implies a difference
in the force on the I', ¥, symmetry displacement
between the ground and excited states. Such a
force would result in a Jahn-Teller type of distor-
tion (or a symmetrical A, expansion) of the near-
est neighbors in at least one of the states. The
component matrix elements of AFp v A€ evaluated
for the lattice in the defect equlhbrlum configura-
tion, i.e., with the impurity ion in its ground
state f=3A4,,, an orbital singlet, which shows no
Jahn-Teller distortions. Therefore, all matrix
elements associated with this state will be zero
and the coupling coefficient related to the even
mode reduces to

Yo ?,
AFl"zr‘f = (Fgeyel Vrgvg ' Tpeve) (21)
and it is noted that for an A,, or E, perturbation,

Z" AFI‘ yyfAFI‘ »rf* ‘? |<r:e7'elvr‘lrg|rge7’e)!z (22)
[4

= (AFrg)z (23)

and is independent of ¥, (and y;). In this situation
the transition probability takes on the simplified

1
o A |
W w)= [Aﬁ:f] (r=1)!

“max
] l ImG(""')(wl) %1; (

4
1 M6y (0 -wy)dw (18)
(w0 —wy)? T W awy -
]
expression

“max AQy3,2
W(Z)(w)=2 (AFT")ZJ‘ Ve

27c®
T, A

Ve vee?
X E [ Z; E yl" vun ”I?u"u{"*:l

r
umf 1e'yf “

1 1
X"— Im GIS;"{ )(wl) ;{7}' ImS r‘ ((IJ - wl) dw1 (24)

(AFr f
rl

where W(w,) is the one-phonon distribution.

Attention will be restricted to where one even
displacement predominates. The complex can al-
ways experience a radial relaxation of the lattice
and hence a coupling to the 4;, Green’s function.
Also since the excited state e ='T, is an orbital
triplet it can be split by E, or T,, distortion. E,
is most probable since this involves radial motion
rather than tangential motion of the neighbors.

The use of Born-Oppenheimer product wave
functions in this particular case should still be
justifiable in the presence of this distortion since
the Jahn-Teller perturbation is diagonal and there-
fore the electronic states are not mixed by the nu-
clear motion. This situation has been summarized
by Sturge.”

W (wy) ImS (0 — wy) dw, ,

(25)

2. Type I: Multiphonon

The Jahn-Teller-type displacement will give
rise to higher-order phonon processes arising
from the same linear term in the perturbation.

By extending the above treatment to »-phonon pro-
cesses of which (» —1) are even, the transition
probability is given by

xff .. f " dw,dw, - - A9, WD (,) Im G (W) * * * IS (W) IMG (W = w1 —wa*** Wy y) (26)
0

(r-l)w
= -A%;K (’y’ — l)f max W(’"”(wl) Imgrg (w - (1)1) dw1 . (27)
0
r

We can see from this the standard result that the
area under the »-phonon distribution varies as

frwmax W(”(w) dw =[Sr°1/(1’ - 1)”] @ max W(l)(w) dw,
[} 0 (28)
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where S is the ratio of the area under the two-pho-
non to the one-phonon intensity distribution,

S= f max W(a)(w)dw/f max ¢ (0)) do (29)

f Imgrg (w)dw . (30)

Equation (30) relates S to the coupling parameter

AFT

e

3. Type II: Two Phonon

Here it is assumed that there is no Jahn-Teller
effect present and hence all matrix elements in-
volving even-parity linear terms in the interaction
potential will be zero. Then the quadratic term
gives rise to a transition probability given by

W= L D

r vevf final states

I‘u‘viai

8:41

b (x;x, Tps| P 0X1Xy & Ty 0X; Xy afrut?’i[ V| OXoXo Tyeve)
8, +hw +hiw'

2
(1MX1 Lervsl Val1xoxoa; ui)’t)(lXoXoat Tyl PIOXoXo ge7e>)‘ (8, - 8, +hv +hw+Tw') . (31)

8,”—8 —fw - ﬁw

This reduces in a manner similar to the one-phonon sideband to give

AQAwv e? y =y x “max
We.p= W(Z)(w) Aw= om0 Z (E E Fyl" TuhTe? Fquun'f,l‘gvt f ImGé‘f:"”(wl) ImGr (w ~(.01) dw; ,
I‘gI‘“nn A f 'Iu'rg o &
(32)
where
o7 5y (TegvelylaiLuiys) @ Ty | Vo Ty e Toove)
Fyr FumT 7
e’s rui"g“{ (84— 80)
<rgf7flvru7u JTgrela; ru47£>(al CyyilylT e'Ye ) (33)
(éu{ - ‘gf)

Note in this coupling mechanism that the functional
form of the distribution coupled differs by a factor
w? compared to coupling type I.

4. Type I: Multiphonon

If the above was the predominant two-phonon
coupling mechanism, then the likely three-phonon
coupling would arise from the third term V; in the
expansion of the electron-phonon interaction, the
7-phonon process from the V, term in the expan-
sion. It is noted in this case that (i) the coupling
parameters are not simply related to one another
and (ii) odd-symmetry-displacement types can also
be coupled.

In the calculation which follows, it will be as-
sumed that coupling of one particular even-sym-
metry displacement will give by far the largest
coupling, however, it is clear from the above that
it is difficult to justify such an assumption in this
coupling type.

V. GREEN’S FUNCTIONS

In Paper I, details of a numerical calculation of
odd-parity imperfect-lattice Green’s functions have
been presented. Here the four even-parity func-
tions are required in addition and, therefore, cal-
culations are extended to include these cases. The

—
method of calculation of the perfect-lattice func-
tions are identical and the results are shown by
the solid curve in Figs. 3-6.

The imperfect-lattice response functions are re-
lated to the above by!

G'™(w)=[1 +G(w) AK (w)]™! G(w) , (34)

where AK = AA, the longitudinal force constant
change in the case of the A,, and E, response func-
tions, and A_K = AB, the transverse force constant
in the case of T,, and T,,. The imaginary parts of
the Green’s functions are shown for two possible
force-constant changes by the dashed curves in
the same Figs. 3-6.

VI. COMPARISON WITH EXPERIMENT FOR 'y, > T,
TRANSITION

The one-phonon process is necessarily of odd
parity and, if it gives rise to the peaks at 205
and 398 cm-!, the distribution makes excellent
comparison both in shape and positions to the re-
sponse function where allowance is made for the
changed mass and a small softening A4 =-8 N/ m?
of the force constant A. (Compare experiment
with Fig. 7 of Ref. 1.)

Further phonons can couple to the transition by
either of the mechanisms treated in Sec. IV. For
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FIG. 3. Imaginary part of the A;, Green’s function.
The solid curve gives the perfect-lattice Green’s func-
tion, whereas the dashed curves give the functions where 0 00 800

changes A4 in N/m have been made in the longitudinal
A force constant. The vertical scale is in units of 1028
sec?/amu.

type I, the sideband takes on a simple form (27)
with only one additional parameter for each even
displacement. The form for type II is far more
complex and there are too many parameters to con-
sider them all empirically and unrelated. There-
fore, to make some calculation in this case it will
be assumed that the area under the #th phonon pro-
cess again obeys Eq. (28), i.e., imposing a rela-
tion between the parameters of various orders.

Il

FIG. 4. Imaginary part of the E, Green’s function.
Notation and units same as in Fig. 3.

FIG. 5. Imaginary part of the Ty, Green’s functions.
The solid curve gives the perfect-lattice Green’s func-
tion and the dashed curves give the functions where
changes AB in N/m have been made in the transverse
force constant B. The vertical scale is in units of 10~28
sec?/amu.

For both coupling mechanisms the simplified
case in which one even symmetry displacement is
predominant will be calculated. The results do
not merit extending the calculation to any more gen-
eral a case. This is the most likely situation if
the coupling arises from a Jahn-Teller type of
distortion, i.e., type I, perhaps less likely in the
case of type II as remarked earlier.

Then the form of the -phonon distribution is
given in both cases by

W w)= [ [+ .fow'ﬂ“ dw; dwy* * + dw,.; W (w,)

05 ng .
04

03

ImGng (w)

02

(U] o

) 1 1 1 h
0 100 200 300 400 500 600 700 800
wl(em™)

FIG. 6. Imaginary part of the T, functions. Notation
and units as for Fig. 5.
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FIG. 7. Comparison of constructed band and experi-
ment. The top curve is the experimental spectrum. The
lower traces are the theoretical constructions using up
to four phonons. The first phonon band (odd parity) giving
the first two peaks is given by the G}‘I’u) (w) response func-
tion. Higher phonon processes involve the coupling of
GE,(‘*’)/ «? (type D) or Gg,(w) (type II) response function
with the parameter S=1. (All response functions are for
defect lattice; Am =34.39amu, AA=—-8N/m, AB=0,)

X Ima_rg(wg) s ImEI‘g(w =Wy =Wy~ Cl),._l) ’ (35)

where W' (w,) is the first odd-phonon distribution,

Gr,(w)= S,P‘(w) =Gr'(w)/w2 for coupling type I,
(36)

—ére(w) =Gr () for coupling type I,
(37)
the coupled mode being I',.
These distributions (35) are evaluated for up to
four-phonon processes weighted according to Eq.

(28) and added to give the curves in Figs. 7 and 8

for coupling to Ay, and to E, displacements. The
response functions adopted correspond to a mass
change Am = 34.39 amu and force-constant changes
AA=-8N/m and AB=0. The AF, parameter is
adjusted to give the ratio of the area under the first
phonon distribution to the area under the second
phonon distribution to be equal (i.e., S=1).

It can be seen from these figures that the agree-
ment using coupling to E, vibrations is excellent
for general shape and peak positions, whereas the
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agreement is poor in the case of the A,, vibrations.
The difference between the curves for coupling
types I and II is small and the comparison between
experiment and the alternative constructions

(Fig. 7) only marginally favor type II. It is an-
ticipated, however, that for type-II coupling 4,,
would predominate as the coupling parameters will
be larger. A,, introduces an additional monopole
term within the coupling matrix element, whereas
E, would introduce at best octopole terms (simi-
larly, Ty, and Tp, would be smaller than 4,,). Thus,
the strong E, coupling suggests that a Jahn-Teller
distortion and a coupling of type I is the more likely
explanation. The excited state is orbitally T,, and
quite possibly, as discussed earlier, experiences
such an E, distortion”; however, it has not been
possible at present to substantiate this from any
other experimental data.

VIL T3, -T's, TRANSITION

Good agreement is obtained for the one-phonon
sideband using the following admixture of Green’s
functions as given in Paper I:

ImGY () +0.025 ImGF> +0. 25 ImGF2(w) . (38)

The imperfect-lattice functions corresponded to the

398 (a)

1 L 1 — —
0 500 1000 1500 2000 2500 3000
wavenumber

(em')

FIG. 8. Comparison of constructed bands for coupling
(type 1) insecond- and higher-order processes using (a)
Gg,(w) and (b) G, (w) response functions. E, corresponds
to type I in Fig. 7 and the empirical parameters are the
same.
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FIG. 9. Comparison between the vibronic emission
band of the Ni** T'g,(*Ty,, #,ed)-T5,(CAy,, t§ e2) transition
and the empirical Green’s-function construction of the
band including two-phonon process. The one-phonon con-
struction is given in Eq. (3); the two-phonon process in-
cludes additional coupling to E, or Ay, functions. The
Green’s functions used are those for the imperfect MgO
lattice with allowance made for the mass change but no
force-constant changes.

substitution of the mass of a Ni? ion but no changes
in force constants.

The two-phonon distributions calculated for this
transition in a manner similar to the above treat-
ment of the Iy (1T, t3 el)-T's,(*A,, t3 e?) transi-
tion are shown in Fig. 9 for the coupling to E, and
Ay, displacements. The traces are those for type-
II coupling; however, these are very similar to
those for type-I coupling. The peak at 540 cm™
is thought to be a one-phonon peak1 and, therefore,
it can be seen that there is again fair agreement

with the two-phonon vibronic band assuming coupling

to the E, vibration, although the strength of the
coupling itself is much weaker. The applicability
of the model to this transition is doubtful. This is
because there are other electronic energy levels
within the range of lattice vibrations (i.e., other
spin-orbit levels of the 3T, state), and therefore
condition (a) of Sec. IV is not satisfied. A cou-
pling to the E, function possibly implies in this in-
stance that these electronic states are being cou-
pled by E, vibrations.

VIII. COMPARISON BETWEEN THE TWO TRANSITIONS

It is worth commenting on the use of different
effective force constants for the two transitions
Ly (o, 15 €5)-T5g(Ag, 15, €f) and Ty, (' Ty, 1, €3)-
Iy, (A, t5.e2). Clearly, there are really differ-
ent force constants associated with each level of

the Ni% ion. However, the variation of the force
constants is only a few percent (~5%) and this
amount of change does not give rise to shifts in the
peak positions of the response functions by greater
than 20 cm™ or substantial changes in their char-
acteristic shapes (see Figs. 3-6). Thus the use
of effective force constants for a transition should
be fair and certainly should not give rise to misin-
terpretation of which displacements are coupling
to each transition.

Note that changing the force constants between
ground and excited states can also give rise to ad-
ditional coupling. However, the force constants
changed and the relaxation of the lattice (Jahn-
Teller or symmetrical expansion) are interrelated
and will couple the same displacement type. This
will be allowed for when the coupling parameters
are treated empirically as done here.

IX. ONE-PHONON COUPLING PARAMETERS

The one-phonon coupling parameters for the
D5 (1Top, 13, €3)-T5,((Ag, tS 2) transition were cal-
culated using the same assumptions made in Ref.
1, i.e., considering the effect of the varying elec-
tric field at the participating electron due to the
motion of the nearest neighbors (considered as
point charges). Again, all intermediate states
are assumed to be at the same energy level so that
closure may be used.

The transition is only permitted by spin-orbit
coupling, and therefore there are no coupling pa-
rameters in the strong-field limit. Using the
eigenstates obtained from diagonalizing Liehr and
Ballhausen energy matrices [Ref. 4, Eq. (4)] for
parameters given in Sec. IV, the coupling param-
eters give the following linear combination of
Green’s functions:

MG 2(w) +5. 42ImG {2 () +3. 28TmGH 2 (w)
+1.02 ImGTa‘ (w). (39

These do not agree with the empirical parameters
where the coupling is totally to the G}lllu)(w) re-
sponse function and this conclusion is not changed
if the spin-orbit coupling parameter is altered by
20%.

The model is crude but had given good agreement
for the Ni% Ty, (3T, 13, €3)-T'5, (A4, t5 €Z) transi-
tion!'® and the V*, 2E,-*A, transition.® The break-
down of the agreement in this case is not under-
stood.

X. CONCLUSIONS

A model which assumes the predominant per-
turbation arises from the interaction with the
nearest neighbors is again used with marked suc-
cess. The initial one-phonon part of the band is
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well fitted by the imperfect-lattice G,‘-‘:’(w) re-

sponse function with only small percen?age changes
in the lattice force constants. The multiphonon
region can be constructed with successive cou-
pling to the GE‘(w) response function. This could
easily be understood if there were an E, Jahn-
Teller distortion in the excited state. However,
there is another coupling mechanism which could
explain this coupling and it has not been possible
to conclusively establish the presence of such a
Jahn-Teller distortion.

The crude point-charge calculation of one-phonon
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coupling which was used successfully for previous
transitions of impurities in MgO has been used
without success—placing some doubt on the validity
of such a model.
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The optical properties of the M(Cy;,) center in MgF, are analyzed in terms of an effective
one-phonon density of states, using a combination of convolution integration and moment
analysis. A satisfactory fit to the experimental absorption spectrum at T=0 is obtained for
this intermediate coupling case, including particularly the sharp structure seen in the one-

phonon region.

Good agreement between theory and experiment is also found for the no-

phonon line and broad-band parameters in absorption as functions of temperature. A calcu-
lated luminescence spectrum, derived from that for absorption by using a simple model to
estimate the quadratic coupling, compares well with the observed emission band at T=0.

I. INTRODUCTION

A practical procedure for calculating the optical
absorption and emission spectra of impurities in
insulators was described in a recent paper by
Mostoller, Ganguly, and Wood! (referred to here-
after as MGW). The computational approach was
based on the well-known theory of optical pro-
cesses associated with such impurities. It pro-
vided for (i) an iterative scheme for finding an ef-
fective one-phonon density of states; (ii) the con-
volution of this one-phonon spectrum to find the
contributions of the n-phonon processes in those
regions where vibronic structure occurs; - (iii)
the use of moment analysis for higher zn-phonon
processes which do not contribute discernible

structure; (iv) the retention of the lowest-order
effects of quadratic coupling on the temperature
dependence of the zero-phonon line’s half-width
and peak position; (v) a simple transformation
between phonon operators in the ground and excited
electronic states of the impurity which breaks the
mirror symmetry between the absorption and
emission spectra characteristic of the linear cou-
pling approximation. As an illustrative example,
the absorption spectrum of the N; center in NaCl
was chosen because it exhibits a great deal of
phonon structure. However, little is known about
either its emission spectrum (if it exists) or the
temperature dependence of its zero-phonon line,

so that some aspects of the computational approach
could not be tested.



